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Objectives of research effort: 

The development of a computational model of human vision, which might also be used as an 
image fidelity metric, involves basic psychophysical research to characterize the mechanisms of 
early vision. Of particular concern, and the basis of many of our experiments, is the 
understanding of visual masking particularly as it applies to acuity and other tasks relevant to 
natural scenes. The approach we employed to examine this problem is the test-pedestal paradigm, 
a common design of psychophysical studies of visual function which has analogous application 
to complex images containing artifacts resulting from image compression or other processing 
technologies. In terms of the test-pedestal paradigm, the image artifacts are considered the test 
whereas the original image is the pedestal masker. Can we predict performance on masking tasks 
using simple targets such as line bisection, Vernier acuity, and two-line resolution? Our results 
demonstrate we can, moreover detection thresholds on complex targets are also readily predicted. 
However, when applying standard filter based models to complex scenes we find that 
performance is not readily predicted. Many additional factors not appreciated before this research 
began needs to be addressed before the successful creation of a comprehensive vision model. Our 
research has highlighted these problems, which we discuss in detail in our publications. 

Overview of the final report: 

The past four+ years of research supported by this grant been very productive with significant 
progress made on several fronts. During this time 31 publications and presentations have 
completed with AFOSR support and more are expected as the manuscript writing continues. 
Copies of four published or in press manuscripts, which have not been included in prior technical 
reports, are included with this report. These papers include additional details of our research 
effort, beyond that contained in prior quarterly and annual reports. This final report summarizes 
the research program and describes the projects we have completed. Since much of this material 
has been presented in prior submitted technical reports we will focus more on our research effort 
since the last annual report. 

The research performed covers a variety of topics but all have been designed to contribute to the 
underlying goal of extending our ability to model human vision. The better the model the better 
the image fidelity metric, a metric that evaluates image fidelity is simply a model of human 
vision. Going into every research project is beyond the scope of this report. We have artificially 
grouped the investigations into three categories and provide an overview of the research in each 
category. The three categories are: 1) Technical developments that further psychophysical 
research in general and address practical issues in designing a vision model. 2) Basic studies of 
visual processing using simple stimuli with an emphasis on masking. 3) Masking and real world 
scenes and its relevance to image compression/quality issues. This section includes the creation 
of the Modelfest group that, in the spirit of collaboration, brings together top researchers 
interested in modeling human vision and promises to accelerate progress in vision modeling. 

In the following sections the relevant publications/presentations supported by this grant are 
indicated by number (see publication list) rather than using a formal citation format. We view 
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this report as an opportunity to not just summarize our research effort but to also suggest future 
research directions based on our experiences of the past 4 years. 

1. Technical developments of general contribution to vision science and vision modeling: 

Pre visual system nonlinearity (references #1, 7, & 10): 

The application of a vision model to images presented on a video display requires the first stage 
of a vision model apply luminance compensation to correct for the display gamma function 
nonlinearity. This stage can be bypassed if, as is common practice in psychophysical 
experiments, a ID look up table has been used to correct for the display gamma nonlinearity. 
However, in the case of natural scenes or most any stimulus with vertical and horizontal features 
a second display nonlinearity is present that is also most never corrected (many psychophysical 
studies only use horizontally oriented stimuli for this reason) which we call the adjacent pixel 

nonlinearity. Video monitors exhibit large adjacent 
pixel interactions along the raster direction, which 
changes the mean luminance and contrast of many 
patterns. The figure on the left simulates the 
magnitude of the problem. The left and right sides of 
the figure are high frequency (light-dark 
alternations), high contrast, vertical and horizontal 
gratings, respectively. As viewed on a video monitor 
at a distance the grating structure is not visible but 
the mean luminance of the left side of the picture is 
noticeably lower than that of the right side. The 
adjacent pixel non-linearity can reduce the local 
mean luminance patterns by up to 30%, even after 
normal 1-D gamma correction. 

We have devised a novel technology which corrects for the adjacent pixel interactions. The 
adjacent pixel non-linearity can be modeled using an exponential low-pass temporal filter 
followed by the monitor's gamma non-linearity stage. The time constant of the low pass filter 
corresponds to the temporal bandwidth of the video amplifier. We have used this 5 parameter 
model along with a series of test measurements to develop a two dimensional lookup table (2D 

LUT) which can be used correct for both 
sources of luminance error. Our first 2D LUT 
was limited to a single video color gun, but 
we have now extended it for use with all three 
video guns simultaneously as shown in the 
figure to the left. The stimulus was a vertical 
grating with alternating light and dark bars. In 
In the plot, a horizontal line would indicate 
perfect luminance compensation. The solid 
line that drops in mean luminance with 
increasing contrast is for the gamma only 
correction condition. The solid (dark) 
horizontal line is the model prediction with 
gamma   and   adjacent   pixel   non-linearity 

Red + Green + Blue Gun 
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compensation. The dashed (light) data line is the actual display luminance after applying the 2D- 
LUT. The jagged structure is due to round off errors associated with the 8 bits/pixel hardware 
limit. The predicted and observed values are within about 1% of each other. The increase in 
mean luminance at high contrasts is an artifact that can be easily avoided (see Carney and Klein, 
1997). With the use of our new 2D-LUT procedure we can be sure that arbitrary 2D luminance 
profiles will accurately reflect the correct mean pixel luminance values on the display monitor. 
Alternatively, a vision model can incorporate 2D-LUT compensation at the first stage of digital 
image processing, when the video image presentation does not include luminance non-linearity 
compensation (normal video presentation conditions). This is an important technological advance 
that will be usefull for the design of future psychophysical experiments and inclusion in applied 
human vision models. 

Practicalities of vision modeling - scarcity of computational resources (#15): 
Front-end filter based HVS models are computationally intensive. As it turns out the desk top 
computer available to me (dual Pentium Pro system) was woefully inadequate. Colleagues 
working on similar problems have systems with over 1000 times the computational power and 
they still wish they had more. While computers are becoming ever faster and cheaper, I fear this 
problem is a barrier keeping interested researchers from working on the development of general 
purpose vision models. While the suitability of different programming tools and languages is 
important as I discussed at the annual 1997 Optical Society of America and SPIE meetings, they 
alone will not solve the problem of inadequate computer resources. As I described at the talk, 
programming language differences can roughly have about a factor of 10 impact on final run 
times. Another important factor in choosing a language is ease of use, where languages such as 
Matlab have enormous advantages over lower level tools such as "C". Our own system is based 
on a combination of Matlab, an efficient high level interpreted language optimized for matrix 
operations, and "C", for time critical modules. I have benchmarked the computational efficiency 

of a few common languages, including 
compiled JAVA, C++, Matlab and 
compiled Basic on optimized 
pointwise matrix operations which are 
critical for filter based modeling. In the 
figure, the computational time is 
shown for each language relative to 
C++ times for double precision 
operations. I have discussed the 
findings in previous reports so I will 
not be labor them again here. Rather, I 
bring this topic up to suggest a more 
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cooperative   approach to computing resources. Yes, programming languages make a 
difference but hardware is a bigger factor (besides personal talent) separating the progress of one 
researcher from another. In my experience, most academic laboratories have desktop computer 
systems connected to the Internet which spend most of their time idle. Distributed computing has 
become an important concept in recent years and I think we should consider how to apply it to 
vision modeling to utilize the countless CPU cycles wasted in labs across the country. Front-end 
filter models are inherently amenable to distributed parallel processing computing, after all they 
mimic the structure of the visual cortex, the ultimate parallel processing engine. A federal agency 
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should invest in the development of a mechanism to distribute human vision model 
computational packets across the internet to registered computers that sit idle much of the time, 
such as at night. I have explored this approach a little and think it has great promise. The 
Modelfest group (described below) or some other organization of vision scientists could oversee 
such a collaborate effort where all who participate stand to benefit without additional cost once a 
distributed computing vision network is operational. 

2) Basic psychophysical studies of visual processing using simple stimuli: 
Our general approach throughout this period of research has been to conceptualize diverse 
perceptual tasks in terms of the test-pedestal paradigm. This often simplifies comparing 
thresholds across tasks which have the same test but different pedestals and enables us to 
determine if special mechanisms are required to explain performance beyond those associated 
with simple contrast discrimination. Using this framework, each experiment generally involves 
determining the test strength necessary for its detection in the presence of different strength 
pedestal, or masking, stimuli. On the applied side, this framework has direct utility in developing 
a fidelity metric where the visibility of image distortions, resulting from the compression and 
decompression process, is to be identified. In that case the distortion due to compression is the 
test stimulus and the original image is the pedestal. The question is to what degree does the 
original image mask the visibility of the test; in this case the compression artifacts. For lack of 
any other natural distinctions I've categorized the studies into those predominantly using static 
stimuli and those using dynamic stimuli (the discussions draw heavily from previous technical 
reports). 

Test-pedestal approach with static simple targets: (#9, 6,16, & 19) 

Resolution (blur), Vernier acuity (jaggies) and contrast discrimination (JND) are important 
aspects image quality. Fortunately, thresholds on these apparently dissimilar tasks can be 
described in terms of detecting a dipole test stimulus in the presence of a pedestal mask. As the 

figure to the left shows, adding a dipole to an edge 
pedestal blurs the edge and adding it to a line pedestal 
creates a Vernier offset. When adding the dipole to 
itself it becomes a contrast discrimination task. 
Analogous combinations can also created using a 
quadrupole test target with dipole and line pedestals. 
Since the test was the same in each task thresholds 
could be directly compared. When thresholds are in 
dipole test strength units of %min2 we find that 

Edge/line    dipole     blur/vemier Vernier acuity is actually worse than resolution and 
simple contrast discrimination. Hyperacuity tasks such as Vernier acuity no longer appear nearly 
as impressive now that we understand that performance is no better than what we might expect 
from contrast sensitivity and may actually be a little worse. We have also used the test-pedestal 
approach to examine the spatial hyperacuity task, three-line bisection. For three-line bisection, 
the pedestal is the center line and the test is a dipole which when added to the center line shifts 
the line to the left or right depending on the polarity of the added test dipole. We have devised a 
model for predicting an observers bisection threshold as a function of line contrast (pedestal 
strength) and the separation between the lines of the bisection target. For the data in the figure 
below the stimulus line separations range from about 2-60 minutes. The pedestal strength 
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ranged from about 1 to 30 times the line 
detection threshold (ctu). Thresholds are 
expressed in terms of the test dipole strength 
with units of %min (these values can be 
converted to min of spatial shift if desired). 
Our threshold predictions for the same spatial 
separation are shown as dashed lines. The 
predictions fit the data within a factor of two 
for all but the lowest pedestal strengths at large 
separation. The predictions are based on each 
observer's own dipole detection threshold. 
Threshold is given by the greater of three 

factors; 1) observers dipole detection threshold, 2) dipole detection threshold * (pedestal 
strength/10) °'5 or 3) line separation * pedestal strength / 60. This formulation captures the idea 
that three floors limit performance; contrast sensitivity, contrast masking by the pedestal with a 
slope of 0.5 and finally at large separations a fundamental spatial uncertainty of the visual 
system, which has become known as the local sign hypothesis. Thresholds can be accurately 
predicted without need for making the many assumptions of standard filter models. 

In the adjacent figure are plotted thresholds 
for four tasks, three line bisection, contrast 
discrimination (JND), Vernier acuity and 
resolution (edge blur), as a function of 
pedestal strength. The dipole detection 
threshold is indicated by an arrow along the 
y axis. Bisection thresholds (open and filled 
squares) are lower than Vernier acuity 
thresholds (diamonds) yet above edge blur 
resolution (triangles) and JND (circles) 
thresholds. At low pedestal strengths 
performance on all tasks is within a factor of 

two of the dipole detection threshold. Masking increases with pedestal strength but at somewhat 
different rates depending on the task. The bisection task base separations of 1.9 and 5.1 minutes, 
shown in the figure, bracket the optimal bisection range. In light of the human retinal sampling 
density, human performance on a diverse set of acuity tasks has long amazed researchers. We 
now see that performance is actually close to what is predicted from simple contrast 
discrimination data. Hyperacuity thresholds are actually slightly worse than predicted from JND 
data. Our research has focused on hyperacuity tasks because they involve high spatial frequency 
mechanisms. High frequencies have great impact on the efficiency of DCT based image 
compression algorithms. Where masking is present, especially at high frequencies the 
compression can be increased without degrading the final image quality. We see from these data 
that masking under simple stimulus conditions is actually small for the range of strengths tested. 
Most masking in natural scenes probably involves stimulus uncertainty issues rather than contrast 
gain control mechanisms, which have become so dominant in the vision science literature (see 
reference #11). 

Pedestal   (ctu) 
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Test-pedestal approach with dynamic simple targets: (#2, 3, 4, 5,12, & 13) 

Our studies of visual masking near spatio-temporal edges using Westheimer and 
Crawford techniques have revealed surprising masking asymmetries that depend on the 
luminance polarity of the test relative to that of the mask (pedestal). For tests and masks of 
similar size, when both have the same luminance polarity (light or dark) strongest masking 
occurs at negative stimulus onset asynchronies (forward masking) whereas for opposite polarity 
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test and mask strongest masking occurs at 
positive stimulus onset asynchronies 
(backward masking). We now understand 
this effect in terms of a stimulus ambiguity 
that has implications for modeling in 
general (Strong Masking panel on the left). 
Implicit in most models of spatial or spatio- 
temporal vision is the assumption that the 
stimulus location in space and/or time is 
know exactly when comparing the system's 
response to the pedestal alone and the 
pedestal plus test condition. This 
assumption is faulty and accounts for some 
of our unexpected findings. The temporal 
ambiguity of test-pedestal onset is not 
treated in any of the current models. The 
problem also occurs in pure spatial domain 
modeling, as Al Ahumada pointed out after 
my SPIE presentation about these results. 

An image fidelity metric which compares two video streams, the original and the codec version 
of the original, frame by frame in perfect synchrony, might indicate areas of visible compression 
artifact which would go unnoticed by a human observer because of this stimulus ambiguity 
effect. This points to a limitation of test-pedestal approach as applied to real world video streams. 

hi light of an earlier sections results using static multipole targets, we decided to study 
blur and resolution using multipoles under motion. Adding a test quadrupole to a pedestal line 
creates a two-line resolution target. We find that sensitivity to the quadrupole test alone quickly 
deteriorates with motion when presented alone or in the presence of the pedestal line. Two line 
resolution performance under motion is predicted by the dipole contrast sensitivity at the same 
velocities. Edge blur stimuli are generated by adding a test dipole to an edge pedestal. Dipole test 
detection thresholds also increase rapidly with velocity. However, when added to a strong edge 
pedestal, blur discrimination performance as a function of velocity is degraded but at a different 
rate from that of dipole detection. We conclude that the test-pedestal approach offers a simple 
procedure for evaluating performance on moving resolution tasks in terms of contrast detection 
sensitivity to the difference signal, the test. Motion deblurring mechanisms appear to offer no 
special advantage in resolution tasks beyond that of simple contrast detection sensitivity for 
moving targets. For lines about 10 times detection threshold, two-line resolution acuity is directly 
predicted by the observer's quadrupole detection threshold over the velocity range tested. Edge 
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blur sensitivity was worse than the observer's detection threshold for moving dipole test targets. 
This was expected since the high pedestal strengths used (about 50 times threshold) put us in the 
Weber masking regime of the test threshold as a function of pedestal strength (TVI) curve for 
edge blur. 

We have also used the test-pedestal approach with sinewave gratings to study grating 
flicker and oscillatory motion where the test is the same counterphase grating in both cases but 
added in different temporal phases. Performance was compared for a wide range of pedestal 
contrast, spatial and temporal frequencies. The main finding was that flicker and oscillatory 
motion thresholds for supra-threshold sinusoidal gratings are similar, suggesting motion and 
flicker have a common underlying detection mechanism. The ability to discriminate motion from 
flicker was elevated relative to their detection thresholds, particularly at high temporal 
frequencies. We offered two models to account for this behavior. The discrimination of motion 
from flicker may require a temporal comparison of the outputs of directionally selective filters 
tuned to opposite directions or to the population statistics of a bank of separable mechanisms. 
One implication of this study is that the common belief that the motion system saturates at low 
contrasts, about 2-5% (Nakayama & Silverman, 1985) maybe incorrect. Using this test-pedestal 

paradigm we observe that when test detection threshold 
is plotted as a function of pedestal strength the shape is 
similar to that found for contrast discrimination data. 
Some facilitation was observed at low pedestal contrasts. 
At about 10-20 times the test detection threshold a 
normal Weber-like region was evident. The adjacent 
figure from our paper (fig 19, reference #13) shows the 
low contrast motion saturation data from Nakayama & 
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Pedestal Contrast (%) Silverman after transformation into the test-pedestal 
formalism (open circles). The figure also contains static 

grating contrast discrimination data from papers by Legge and Foley (filled circles) and 
Stromeyer and Klein (triangles). When plotted in this way the motion discrimination data look 
very similar to the static contrast discrimination data. These results support the notion that 
motion channels may not show low contrast saturation but instead may have a contrast gain 
control mechanism, or noise, that increases with pedestal contrast. In terms of an image fidelity 
metric, we now know that the motion mechanisms will not need special saturation masking 
behavior, they behave just like static contrast detection mechanisms. 

There has been a long running debate about whether the early motion system is strictly 
monocular or includes a binocular component. We have previously shown that when the spatio- 
temporal quadrature components of a moving grating, which are not themselves moving, are 
presented dichoptically a moving grating is perceived. Lu and Sperling (Vision Research, 1995) 
have devised a stimulus decomposition which removes feature-tracking cues that could provide 
the basis for dichoptic motion perception rather than motion energy detection. The simple 
addition of a static pedestal grating to each eye's image removes the feature cue and according to 
Lu and Sperling, abolishes the cyclopean perception of motion. We have subsequently shown 
that the early motion system is indeed binocular by using a test-pedestal motion stimuli, void of 
feature tracking cues, which when presented dichoptically elicits the perception of motion. In the 
figure below, subject SC is able to correctly identify motion direction under dichoptic 
presentation conditions in the presence of a static pedestal grating which removes the feature 



Neurometrics Institute T. Carney 

tracking cues. When the spatial frequency was 1 cycle/deg performance was perfect for all 
pedestal strengths and test temporal frequencies (filled triangle symbols are covered by the filled 

square symbols). 

The discrepancy between Lu and 
Sperling's results and ours 
involves our use of a longer trial 
duration so the observer can avoid 
the masking effect of the pedestal. 
In addition we have shown that 
this binocular motion system lacks 
the low pass temporal frequency 
behavior which is characteristic of 
a feature tracking system. Once 
again the test-pedestal paradigm 
offers a powerful way of revealing 
the underlying structure of visual 
mechanisms. 

-*- 1 c/d, 4 hz 

-*- 1 c/d, 8Hz 

-a- 3c/d,4hz 

-A- 3c/d,8hz 
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3. Masking and real world scenes, image compression/quality issues. 

This section focuses on more complicated stimuli and the limitations of the traditional approach 
to the study of masking using simple targets such as those of the previous section. The section 
has three principal subsections: A) We begin with a discussion of masking using a complex 
Vernier acuity stimulus and describe models, that predict the results, which diverge from 
standard filter models. This is followed by studies that applied standard filter models to real 
world video sequences to evaluate image quality. A new noise masking paradigm is described 
which enables us to explore mechanisms with adaptable filter properties. B) Next the discussion 
moves to limitations of the test-pedestal approach and the problems resulting from the fields' 
emphasis of contrast gain control masking. C) Finally, we end with a review of the activities of 
the Modefest group, which we have contributed significantly to over the past couple years. 
A. Studies of visual masking using complex visual stimuli (# 16,17,18, 21, 22, 29, & 31) 
We have used the stimulus configuration shown on the right to determine the characteristics of 
first order mechanisms and their resistance to masking in Vernier acuity configurations.. The 
Vernier targets are the two narrow central ribbons of grating (static or moving). These ribbon 
stimuli have two important advantages for studying vernier j 
acuity: 1) they are localized in spatial frequency, and 2) they are | 
localized in there horizontal extent. We measured the orientation, | 
spatial frequency and width tuning of Verneir acuity over a wide 
range of ribbon spatial frequencies. The results show there are | 
multiple spatial frequency tuned mechanisms which can signal a | 
Vernier offset. For example in the figure below, the vernier 
thresholds are shown as a function of background mask spatial ; 
frequency. Six ribbon spatial frequencies were tested. For low! 
ribbon frequencies (1-5 c/d) the most effective masker was at a 
higher spatial frequency. These results might offer support to 
those who suggest the visual system lacks foveal low spatial frequency mechanisms. Another 
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striking feature of the data (not shown) is the dependence of frequency tuning on the Vernier 
ribbon width. The results pose serious problems for current models of early visual processing, 
they are incompatible with an oriented filter, line element model, in which differential responses 
of a number of independent filters are pooled across spatial frequency, orientation and space. We 
performed a wide variety of calculations to determine if filter models could account for the 
pattern of results obtained. Our modeling shows that threshold elevations predicted by filter 
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models (with a wide range of filter bandwidths, sensitivities and noise levels) are off by, at best, 
a factor of three in regions of high threshold elevation (masking). To predict the data we have 
developed an adaptive template model where the template matches the stimulus task. This model 
does a good job of predicting all the characteristics of the data set that includes a broad spectrum 
of test conditions. We argue that the human visual system, much like and ideal observer model, 
is able to construct templates for stimuli of this level of complexity under well specified (and 
rehearsed) tasks. This analysis suggests that standard models with fixed sampling characteristics 
may be inadequate to predict performance on many tasks. 

We have also been applying filter models to more applied stimuli, namely standardized 
video streams that are used to evaluate digital compression technologies. In a global network, 
stringent delay requirements for interactive video pose challenges to the conventional, frame-by- 
frame, synchronous video rendering. The significant delay jitter associated with packet networks 
is a big problem. To reduce this delay, we have proposed a video coding method, called "delay 
cognizant video coding (DCVC)" in which each frame is decomposed into separate data flows, 
which can tolerate different delays. The reconstruction of video at the receiver asynchronously 
renders the most visually significant information as it arrives. We have been performing basic 
psychophysical tests on DCVC sequences to estimate the effect of delay on video quality. Careful 
psychophysical testing has shown that even a single frame delay can be detected, as is expected 
from the human spatio-temporal sensitivity envelope. However, as we explored the space we 
observed that for some compressed sequences, DCVC could actually improve subjective image 
quality. The seven video sequences used in the experiments were standard H.263 test clips. For 
each sequence there were two delay conditions, no delay and a delay offset of 12 frames (-400 
milliseconds) between the low- and high-delay data flows. For each delay condition there was 
two video compression (MPEG) conditions, high and low. After each presentation the subject 
was asked to rank order the 4 stimulus conditions for quality using there own subjective criteria. 
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As expected, higher bit rates delivered better quality. What is more interesting, however, is that 
within the same compression rate, the sequence with the large delay offset was usually favored 
over sequences rendered delay jitter free. This very surprising result appears to be related to a 
blurring of the high temporal frequency components. Traditional computational video quality 
measures such as mean square error (MSE) and peak signal to noise ratio (PSNR) indicate the 
introduction of delay would degrade video quality. We also compared the results with predictions 
from a standard filter based HVS model (MPQM) for these DCVC sequences. As expected, the 
filter model also predicted that compressed plus DCVC sequences should appear to have slightly 
poorer quality than for simple compression without DCVC. Here again we see that standard filter 
models are two simplistic in approach to capture true image quality. The MPQM seems to over 
estimate high spatio-temporal frequency masking or the significance of these components for 
perceived image quality as compared to image fidelity. 

We believe the reason for the puzzling observation that DCVC can actually improve video 
quality over compression only conditions, is that regular H.263 compression introduced dynamic 
noise artifacts are reduced by presenting the same images for several frames in areas where the 
original video is relatively static. Depending on context, the flickering caused by quantization 
noise can be very disturbing which DCVC can reduce and thereby improve image quality. To 
characterize this effect we tried to determine types of scene content that resulted in this 
improvement of video quality. It's clear that the effect is very context dependent and related to 
observer expectations of temporal change in different parts of the scene. Evaluation of image 
quality is much more complicated than we expected, low-level visual masking participates in the 
perception of image quality but other high level factors including observer expectations are also 
very important. We designed a battery of simple test stimuli that exhibit the DCVC effects we 
have noticed which could be used as tests of vision models and compression algorithms that try 
to take advantage of this effect to improve video quality. The frames in the figure below shows 
the luminance profiles for two successive frames of a small piece of two blurred circles that are 
increasing and decreasing in diameter. The change in diameter is about 0.5 min (from row A to 
row B), which is just barely detectable. The right two images show the luminance profiles of the 
same two frames after compression. The change in luminance near the base of each ring is very 

noticeable and disturbing even though 
^^^ .i:m, c°«*™** ...<;r;.fifcv the  rings   themselves   appear  to  be 

stationary. This is a case where DCVD 
would greatly enhance the image 
quality compared H.263. Other stimuli 
in the battery mimics motion 
transparency and shadows moving over 
a texture condition both of with produce 
similar results. With increased 
understanding of the impact of dynamic 
noise on image quality, future video 
encoders could improve video quality 
while reducing the bit rate. 
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Noise masking and adaptable filters in human vision: Noise masking needs to be better 
understood both for improving our understanding of suprathreshold visual processing and for 
improving image compression in natural and medical images. Masking by noise is seldom 
studied in traditional psychophysics yet those studying medical imaging (complex stimuli) 
commonly use it to study masking. We have been trying to bring together the approaches of 
multiple disciplines to see how they might bear on the problem of image fidelity. Using noise 
masking of sinusoidal gratings we have devised several new analytic techniques for overcoming 
previous limitations in the use of noise for psychophysical testing and have demonstrated the 
importance of cues that alter stimulus certainty. The results point out the importance of higher 
order processes in a seemingly low-level visual masking task. There is a strong cognitive 
component (learning, memory, attention) to the tuning of mechanisms in noise masking. 

The usual ideal observer calculation of efficiency ignores the run-to-run fluctuations, which 
we consider important. For example, in a given run the ideal observer may do poorer than 
average, because of the particular noise fluctuation and the human observer would likewise do 
worse than average. The usual calculations would underestimate the efficiency. We calculate 
ideal observer performance on a trial-by-trial basis to achieve a much more accurate estimate of 
human observer efficiency. This new method of analysis we hope will become more common in 
future studies. The following paragraphs goes into these results in more detail since they have yet 
to be published or discussed in previous reports. 
Methods: As in most of our previous studies we utilized the test-pedestal paradigm but in this 
case add a noise mask. The noise mask was the sum of the first nine harmonics of a 0.5 c/d 
sinewave fundamental grating. Noise = af £f=i-9 cos(rcfx) + bf sin(Ttfx), where a & b are gaussian 
random numbers. A new noise sample was created for each trial but the a & b coefficients were 
for stored for later frequency tuning analysis. Li all runs different samples of the same noise 
distribution were used. 
The test+pedestal was a windowed 2.5 c/d sinusoid: test = (cp + ct)cos(7t5x+6)((l+cos(27tx))/2)n, 
where cp and ct are the pedestal and test contrasts and n = 0 or 4 for the 1 and 5 cycles patterns, 
respectively. Eight test+pedestal patterns were used with two alternatives for each of three 
parameters, as follows: 
• Pedestal contrast: 0% or 40% 
• Number of cycles: 1 or 5 (enveloped test+pedestal pattern) 

• Phase: fixed (with fixation marks) or random (no marks) 
In each run of 200 trials four test contrasts (0,1,2 & 3 times a base contrast) were intermixed. 
The observer gave a four category rating response corresponding to their estimate of which test 
contrast was presented. The stimulus duration was 0.3 sec in all but one condition. For the fixed 
phase, no pedestal, five-cycle test stimulus we did runs at 3.0 sec as well as 0.3 sec. Feedback 
was provided after each response. The feedback was the calculated ideal observer's response 
rather than the actual test contrast, on the assumption that it was more reliable since the noise 
could in some trials actually reduce the test contrast. The ideal observer made judgments on each 
stimulus trial just as the human observer. How to calculate the idea observer's response is an 
interesting problem/advance in itself, discussion of which we save for a future publication. 

Results: -1) Determine which frequencies the observer uses: We kept track of the 18 amplitudes 
of the noise pattern for each trial (9 even and 9 odd components). At the end of each run we 
modeled both the human and the ideal subject's ratings using the following linear model: rating = 
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const + S rf cf, where Cf are the contrasts of the cosine phase noise components for the phase 
known case and for the phase unknown case we used the Pythagorean sum of the even and odd 
components. The rf coefficients are estimated by linear regression. The two observers had similar 
results, the figure below shows the average of the two. The upper and lower rows of plots are for 
the random phase and fixed phase conditions respectively. The data for the one-cycle test patterns 
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(left panels) uniformly show a broad 
frequency tuning, indicating that the 
human observer is using the broad 
range of frequencies that comprise 
the test pattern. Except for one case, 
the  five cycle test patterns  (right 
panels)    show    extremely   narrow 
frequency   selectivity.   That   means 
that in the 0.3  sec exposure the 
human observers were able to utilize 
all five cycles of the test pattern. The 
one  exception  is  the  case  of no 
pedestal  and  fixed phase.  In this   f 
condition      optimal      performance   §. 
requires scrutiny of the locations as   g 
well as contrasts of the peaks. For 
this condition, both observers also 
did the task with a 3.0 sec duration 
(shown as bold line). The extra time 
allowed  scrutiny  to  produce  very 
narrow frequency selectivity. 
Results: - 2) Discrimination threshold as function of pedestal strength: The two observers' data 
are combined in the plot below showing an estimate of the TvC function. The abscissa (local 
pedestal) is the mean contrast between two test levels. The ordinate is the local threshold. The 
local threshold is obtained by dividing the test increment by the delta d' between adjacent 
stimulus pairs. This procedure can be justified for pedestal contrasts above threshold where the 
transducer function becomes linear. However, for simplicity of presentation we use the same 
formula for the threshold region. That enables us to combine the pedestal =0 and pedestal = 40% 
into the same panel. For example, suppose the test contrast was 10%. Then we would have points 
at abscissa values of 5%, 15%, 25%, 45%, 55% and 65%. The human and ideal observer 
thresholds are identified in the figure. The data for the 3.0 sec condition for the 5 cycle phase 
known data are also labeled in the figure. 
Several items are noteworthy: 
• The human shows strong threshold elevation at the leftmost datum for each condition in which 

the duration was 0.3 sec. This indicates stimulus uncertainty even in the fixed phase 
condition, where 0.3 sec duration was insufficient to gain certainty. The 3.0 sec duration 
allowed sufficient scrutiny to bring the human close to the ideal. 

• The pedestal greatly reduces uncertainty and the human and ideal curves are very close to each 
other. 

spatial frequency components (c/deg) 
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• For both fixed and random phase and both low and high pedestal strengths, the 5 cycle 
thresholds are substantially lower than the 1 cycle thresholds. There is substantial spatial 
summation. 

Test vs. Pedestal plots in the presence of noise       The   overall   results   have   several   important 
implications a few of which are described 
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Spatial summation. Kersten (Vis. Res. 1984) 
reported that there was negligible spatial 
summation in the presence of noise. Our results 
show that thresholds for the five-cycle stimulus 
were 66% and 63% of the one-cycle thresholds 
for the no pedestal and 40% pedestal data. These 
results indicate substantial spatial summation. 
We believe that the explanation of the difference 
between our results and Kersten's is that he used 
temporally white noise, whereas, our noise was 
static. For the dynamic case it may not help to 

scrutinize multiple bars to obtain independent samples since one can attend to a single bar to do 
averaging. In our static case averaging over multiple bars is the only way to do averaging. It is 
noteworthy that with five cycles our observers had contrast 'efficiencies' of above 50%. The only 
case of poor efficiency by both observers was for the 5 cycle, fixed phase condition. 
Role of scrutiny. By increasing the duration from 0.3 to 3.0 sec Subject 2's human thresholds 
went from 13.9% to 6.1% while the ideal thresholds went from 3.1% to 4.4%. The efficiency 
changes from 22.1% to 72%. For Subject 1, human thresholds went from 14.8% to 7.8% while 
ideal thresholds went from 4.9% to 7.1% corresponding to efficiencies of 33% for 0.3 sec and 
91% for 3.0 sec duration. The subjects felt that the three seconds were quite well spent in 
checking whether there were peaks near the fixation marks. 
Run-to-run fluctuations. If one ignores the left-most datum for the human observer where human 
performance is severely degraded compared to ideal (figure above), then one sees a strong 
correlation in the fluctuations between the human and ideal observer data. It is useful to keep 
track of the ideal observer's responses on individual runs when calculating efficiency. Our 
calculation produces efficiency estimates with smaller standard errors than if the 'absolute' ideal 
observer's thresholds were used rather than the run-to-run thresholds. 
Cognitive components in visual tasks. We developed a quick, reliable method for estimating the 
frequencies used by subjects in this task. We found that subjects were amazingly efficient at 
adapting the 'mechanism' bandwidth to the task at hand. This is reminiscent of the earlier results 
on Vernier acuity, which were best modeled using templates, a kind of adaptive filter. The fixed 
filter properties of present HVS models will need to include a means of adapting mechanism 
bandwidths and other characteristics depend on task demands. This is not an easy problem, we 
first need to determine to what degree and under what conditions the HVS can adapt filter 
properties. 

B) Multitude of masking phenomena in real world situations. (#6,8,11,14,24) 
When we began formulating this research effort about 6-7 years ago the vision science 
community (us included) focused on two types of masking, contrast gain control and transducer 
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function with a saturating non-linearity. Our original proposal assumed that once we understood 
both types, we could build a computational vision model or fidelity metric that could be used to 
improve image compression. Over the past several years we have learned that the situation is not 
so clean cut, especially as it applies to real world scenes. While gain control and transducer 
function masking are important factors in laboratory studies using simple targets, it seems other 
factors may become just as important, if not more, for complex stimuli in real world applications. 
Some of these effects have been alluded to in the discussions above involving our experiments 
with complex stimuli. In our 1997 SPIE presentation we began to realize the magnitude of the 
problem and identified seven different types of masking. The last two in the list, stimulus 
uncertainty and intrusive noise, are probably most important in terms of a fidelity metric and are 
missing from present models (its not clear how to include them as yet). 
We are not alone in this general realization, all of the talks in our session of the meeting focused 
on this very issue. Our studies on noise masking above were designed to start addressing these 
issues but this is just the beginning of what needs to be researched. The most dramatic 
demonstration of the failure of present HVS model based fidelity metrics was presented by Dr. 
Corriveau at this years SPIE meeting (2000). He reported on the VQEG (video quality experts 
group) international effort to evaluate present video fidelity metrics, eight HVS based metrics 
and the standard PSNR metric, which uses no information about the human visual system. 
Performance of the metrics was compared to actual psychophysical measurements on the same 
natural scene video clips. To everyone's dismay, the PSNR metric performed as well, and in 
some cases much better than, the HVS based metrics. Clearly, much more research is need before 
we can successfully extend our models of masking derived from studies using simple stimuli in 
laboratory setting to real world video content. I think the Modefest group effort is a good start in 
the direction of using complex stimuli and will become even more relevant as the years progress 
and they move to increasingly in the direction of more complex targets and tasks. 

The 7 general categories of visual masking described in our manuscript are summarized 
here again for emphasis. Again, the most important of which are categories 6 & 7: 
1. Pooled Contrast gain control: This model employs divisive inhibition to set the gain of the 
optimally responding mechanisms by dividing their activation by the response of other 
mechanisms that also respond to the test and mask. While this type of model has physiological 
support it may only account for a small portion of masking in natural scenes. 
2. Single component transducer saturation: This is a special case of contrast gain control where 
the optimal mechanism response is the sum of the mechanism response to the test and to the 
mask. If the mechanism has a saturating non-linearity then the visibility of the test is a decreasing 
function of mask strength. Neurons do exhibit a saturation non-linearity. However, as some 
neurons saturate others with high thresholds are just becoming active. 
3. Phase Inhibition or Pythagorean (two component) pooling: Inhibition between phases may 
be important. Mechanisms with different spatial phases are summed together before a saturating 
non-linearity stage. 
4. Multiplicative noise: The first three categories of masking have the implicit assumption that 
visual system noise is constant. It's been shown that data fit with a compressive non-linearity 
transducer function can also be fit with an accelerating transducer function in the presence 
multiplicative noise. 
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5. Masking by beats (phase locking): The beat pattern associated with amplitude modulated 
gratings can mask the visibility of a grating at the beat frequency even though the pattern contain 
no energy at the beat frequency. The masking behavior might reflect a rectifying non-linearity. 
6. Stimulus uncertainty: This category along with category seven maybe the most important areas 
of masking in terms of real world scenes (video segments) yet relatively little research in this 
area has been performed. Stimulus uncertainty is where the making pattern is confused with the 
test pattern. Here we are concerned with the cases where the masker noise intrudes because the 
observer is uncertain about which visual mechanism contains the signal. In this category we have 
three sub-categories: Imperfect memory: In many cases the mask appearance must be 
remembered as in a contrast discrimination task. If response to the mask alone is not remembered 
correctly then it could be confused with stimulation by the test stimulus alone. This is an 
important condition in image fidelity of video sequences which would typically include a large 
memory component when mask (original image) and mask plus test (codec image) image 
sequences are compared sequentially. Mistaken identity: Here the mask and test are activating 
different visual mechanisms but the observer confuses the two classes of responding 
mechanisms. For example, discrimination of two overlapping sinewaves (test and mask) of 
similar frequency with spatial phase and amplitudes randomized over trials. Phase uncertainty 
would greatly elevate the discrimination threshold. If phase of the test is unknown this elevates 
the transducer function slope. The final decision rule is critical, how does the system combine 
information across activated mechanisms to discrimination test from mask. Pooling across 
mechanisms or complex cell pooling: This category is similar to the previous except here we 
think of the pooling across mechanisms to be hard wired, much like the integration seen at the 
complex cell stage of the visual cortex. Here the decision strategy is based on a weighted pool of 
mechanisms. A simpler but less efficient ideal observer rule that might be used here for the phase 
uncertainty issues described above. 
7. Intrusive noise: In this category the intrusive noise directly contributes to the mechanism 
detecting the test. In the previous category the intrusive noise tended not to overlap with the test 
(it did not directly activate the mechanisms detecting the test), the intrusion resulted from 
cognitive uncertainty between mechanisms responding to the test and mechanisms responding to 
the mask. Both types of intrusive noise will likely have a large effect on detecting a test pattern 
in the presence of a pedestal or mask pattern. This source of masking will have its largest effect 
in a complex visual scene where stimulus uncertainty will be maximized. In simple visual tasks, 
as commonly used in vision science experiments to reveal underlying mechanism function, the 
stimuli tend to minimize intrusive noise masking. At present the models designed for use as a 
fidelity metric do not incorporate intrusive noise masking and therefore are likely to greatly 
underestimate masking, especially in images of a complex scene or video sequences. 

C) Modelfest - an innovative approach to vision modeling (#20, 22, 23, 25, 26, 27, & 28) 
Over the past 35 years, the vision science community has made significant progress in 
understanding the early stages of visual processing. Visual psychophysics and physiological 
studies have revealed a multi-stage parallel processing structure of the early human visual system 
(HVS). Although most HVS models exhibit similarities, such as banks of Gabor filters, they have 
distinct differences in how they combine filter responses and account for visual masking. Are the 
model differences significant? Under what conditions does one model perform better than 
another? These questions are very hard to answer because models are rarely compared using the 
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same psychophysical data set. As a result, the efficacy of different models is unclear. At a 
modeling workshop in the 1997 annual OS A meeting, we began setting the framework for the 
Modelfest group to address the issues and enhance cross-fertilization among vision modelers 
through several means. The general feeling at this and subsequent meetings was we need to 1) 
develop a large public database of psychophysical thresholds with stimuli designed to challenge 
and facilitate the development of HVS models. 2) devise a scheme for evaluating models using 
the public database of stimuli and psychophysical thresholds. As models become complex, 
comparisons of their efficacy can be very difficult. 3) through the public meetings of the 
Modelfest group, can foster the sharing of ideas between members and encourage other vision 
researchers to contribute to HVS modeling. Previously, there has been minimal cross-fertilization 
among vision modelers, and finally, 4) provide a "standard observer" data set for spatio-temporal 
vision, much like color vision has had for many decades. 

In June 1998, I organized, and continue to administer, the Modelfest data collection group. 
The 12-member data collection group devises stimuli that are deemed critical for developing and 
challenging vision models. Our goal is to provide an extensive public stimulus database to be 
used for testing different aspects of HVS models. The database includes psychophysical 
threshold data, from laboratories across the country, on each of the stimuli in the database. The 
database will grow each year, and presently contains detection thresholds for a set of 44 stimuli. 
The figure below demonstrates the variety of targets in the database. All the stimuli and 
preliminary data from the first year's data collection effort are posted: www.neurometrics.com/. 

Baguettes Subthreshold Summation      Gaussian      Future    years  . wiJ} 
include stimuli 
designed to challenge 
models in areas such 
as contrast masking, 
and    color    vision. 
Once a large, readily 
accessible    database 
of      stimuli      with 
psychophysical 
thresholds exists, the 
developers of general 
purpose HVS models 
will be compelled to 
provide performance 
data      using      the 

database images before their model will be taken seriously. As more models are applied to this 
common data set it will become much easier to determine which model innovations actually 
improve model performance. Modelfest is a dramatic change from how HVS modeling has 
progressed in the past. This exciting new approach offers the field a simple way of comparing 
models and learning from each other's innovations and mistakes. 

Several groups have already started modeling the first Modelfest dataset, ourselves 
included. We have designed a spatial vision model based on common assumptions about early 
visual mechanisms. The goal was to see how well it predicts the database thresholds. Moreover, 
we wanted to determine how well the test battery of stimuli constrained model parameters. Our 
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model incorporated 7 free parameters: spatial and filter pooling exponent parameters, three 
contrast sensitivity function parameters and two filter bandwidth parameters. The figure below 

outlines the model showing the 
1VTODFT stePs Performed to determine 

optimal parameter values. 
The model predictions were 
very accurate as shown in the 
figure below. The average 
group threshold for each of the 
43 stimuli is plotted with open 
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parameters.       The 

error    for    each 
stimulus was within 1 db. Filter 
bandwidth        was        tightly 

constrained at 1.5 octaves but filter length tuning was poorly constrained. 
This version of the 'standard model' can accurately fit the Modelfest dataset. However, the 
Modelfest dataset does not appear to adequately cover the stimulus space to constrain the filter 

length in this version of the 'standard MODEL FIT TO AVERAGE OBSERVER 
model'. We are now extending the 
dataset to find stimuli that better fix 
the    filter   bandwidth    parameters. 
While the success of the model is 
impressive   given   the   diversity  of 
stimuli,   this   was   only   based   on 
detection thresholds and avoids the 
topic of masking. Future Modelfest 
data collection efforts will focus on 
masking which will certainly pose a 
seijous modeling challenge. 

One of the goals of Modelfest was 
to facilitate interactions between 
members. The fruits of this approach 
have already been demonstrated to us, Modelfest members have pointed out to us limitations of 
the function we used to characterize the CSF. I'm sure using a recommended CSF model we 
could improve upon the fit shown in the figure above. Modelfest offers great promise as a vehicle 
to enhance future modeling efforts by providing standardized datasets and facilitating 
interactions between laboratories across the country. 

20 
Stimulus 
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